ISO Mining Standards to protect worker health in operator enclosures (cabins) from dust and gases

Liam Wilson

ISO Committee TC-82 – Mining, WG 9

24 August 2022

Overview

- Provide an overview of & development of ISO 23875 Mining Air quality control systems for operator enclosures Performance requirements and test methods (2021);
- Purpose/Benefits of the Standard;
- Application in practice (examples);
- 2022 Amendment;
- Other developments e.g. technology;
- Development of a gas related standard;

ISO 23875:2021 - Purpose

- Developed 2018-2021, Published 2021;
- One tool, as a part of dust exposure risk management;
- Protect worker health prevent exposure to dusts in cabs that cause occupational lung disease in mobile equipment;
- Monitor and maintain CO2 levels at a safe level;
- Provide a standardised approach for mining (and other industry e.g. construction, agricultural etc) globally;
- Provide a lifecycle standard from design to maintenance, outcome driven;
- Provide measurable requirements to determine compliance and effectiveness i.e. CO₂ level, decay time, particulate concentration, pressure

ISO 23875:2021 How was it developed?

- Different approach taken in development;
- Lifecycle approach end to end;
- Different people involved:- broad cross section, Safety professionals/Industrial Hygienists;
- Reviewed//commented on by OEMs, Operators, Consultants, Regulators for example;
 - EMERST;
 - Qld Inspectorate;

Cross-Industry Team of Experts

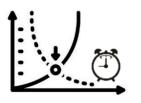
Committee that wrote standard composed of cross-functional members, including:

- 22 Subject matter experts
- 10 Countries
- 6 Industrial hygienists
- 6 Mining machine manufacturers
- 3 International mining companies
- 3 Consultants to the mining industry
- 2 Suppliers to the mining industry
- 1 Field engineering company

Additional comments on draft from:

- TC-42 WG4 ISO 29463
- Rio Tinto
- Volvo
- EPIROC
- EMERST Australia
- NIOSH USA
- MSHA USA
- OSHA USA

RSHC


ISO 23875: Standardised Machine Requirements

Maintain Defined CO₂ Levels

Maximum allowable CO2 = Ambient CO2+400ppm

Recirculation Efficiency

Maximum respirable particulate matter concentration ≤25 µg/m3 at start/end of decay test, maximum of 120 seconds decay time

Increased Filter Efficiency

A filter that meets more stringent test criteria, typically an ISO 15 E or ISO 35 H HEPA filter, will be required in ISO 23875-compliant operator enclosures

System Maintains Cab Pressurization

Minimum sustained pressurization, when the machine starting device moves to the "on" position shall be ≥20 Pa, maximum sustained pressure shall not exceed 200 Pa

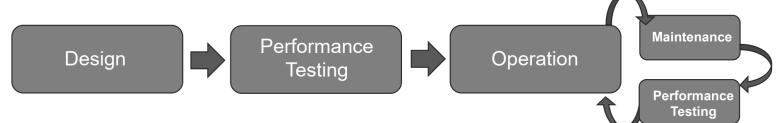
Н	 Н
ы	H
P	P

Real-time Operator Cab Monitoring

Cab pressurization and CO2 levels monitored by permanently installed monitoring system

*Some providers also monitoring particulate real-time

All engineer controls must be applied to provide supplier's declaration of conformity – No short cuts


Life Cycle Standard

- 1. Initial integration into the machine cab (new, retrofit);
- 2. ISO 23875:2021 Certification of Conformance:
 - a. Performance testing ;
 - b. Operators Maintenance manual;
 - c. Issuance of Declaration of Conformance;
- 3. Ongoing Recertification:

a. Maintenance (in house, contract)

b. Updating service parts in Operator's maintenance manual during recertification

Benefits of ISO 23875:2021

- Controls dust exposure to reduce incidences of ٠ respiratory related illness/disease;
- Establishes requirements that can be consistently monitored, tested and ٠ managed by operations;
- Addresses a key health hazard, creating a safer workplace; •
- Lowers equipment maintenance costs, e.g. A/C run longer and more ٠ effectively with reduction of dust build up on evaporator core;
- Determines maintenance practices and service intervals to maintain ٠ required cab performance;
- Creates a consistent global standard and approach to cab air control • systems reducing impacts of regional regulations and multiple iterations of machines, platforms, parts

Equipment

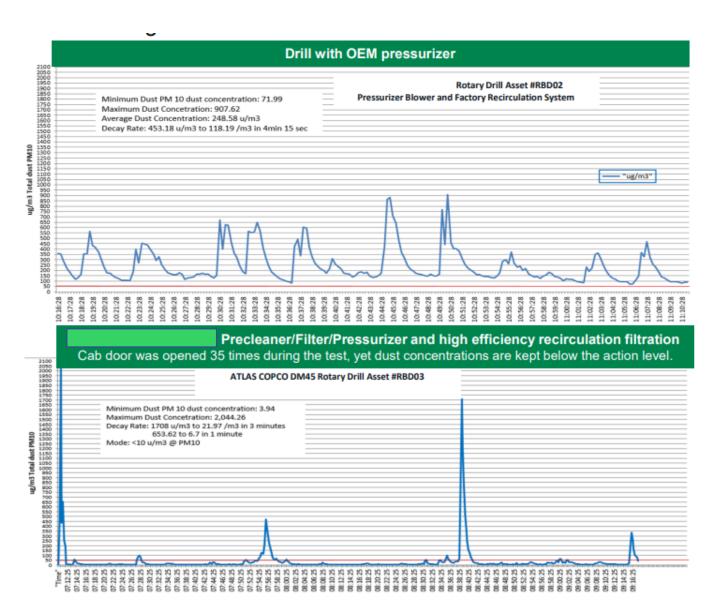
Operators

Insurers

Engineers

Manufacturers

HR and **Recruiting Mgrs**



Case Studies fibrous dust management

NIOSH 7500 test results for Silica and NIOSH 7400 test results for Asbestos RESPA-CF and FFX2 equipped Drill (Drill 03) vs. similar drill with Traditional pressurizer system

Subject: Drill 03 testing IH results

Hi to All,

We did two days of air quality sampling (Silica and Asbestos) in the Drill 03 versus another similar drill on the same pattern the same day in order to have a good companison. The variables, environmental conditions and the composition of ore, were pretty much the same except the only possible difference can be the working methods adopted by each driller; such as one driller leaving the door open while getting the sample and the other closing their door. Other differences might be the housekeeping habits of each individuals during or after the shift.

Here are the Regulatory Limits and Action Levels for the contaminants of concern:

Contaminant	ACGIH 1994- 95 Adjusted TWA 12h Regulatory Limit	ACGIH 2014 Adjusted TWA 32h Action Level		
Silica (quartz)	C.OTH INSTITUT	0.024 mg/m ²		
Asbestos	0.4754/0	0.095 f/cc		

Here are the results of the comparison sampling of Drill 03, equipped with a pressurization and recirculation system, versus a drill without such system. The results in the table below are ambient in the cabin.

The silica result in light green are close to the Action Level (0.024).

Asbestos: Calculated TWA for Asbestos (I/or) Date Orill 03 Similar Drill 10 Mar-15 0.020 0.080 13-Mar-15 0.021 0.251

Therefore as you can see, there is a significant difference between both results.

That is a good news! © Regards, KM Industrial Hygeniest

DRUL 2, 3, AND 6 WERE ALL WORKING ON THE SAME PATTERN FOR THE TESTING PERIDD

Case Studies coal dust management

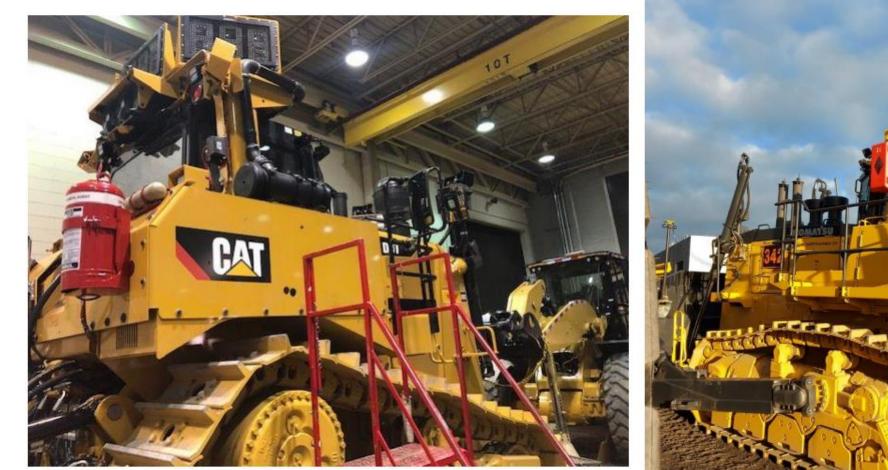
Cab performance evaluated using ISEEE 1.002 In Field Testing Method, on a Hitachi EX3600 actively working in an above ground coal mine, to determine the effectiveness of the cab to protect the operator from total respirable dust exposure. The cab was found to be highly effective with stabilized dust concentrations well below 25 μ g/m3.

PM10 Data displayed showing last 1 hour and 10 min of test.

ISO 23875:2021 Pilot Installation

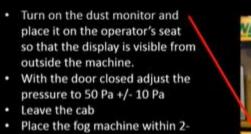
ISO 23875:2021 Pilot Installation

Excavators



ISO 23875:2021 Pilot Installation

Dozers



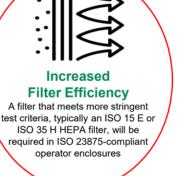
Practicalities

- Tools, checklists, training materials etc;
- OEM's, Operators integrating Standard into Specs, equipment

Appendix 1: Pe	rformance Te	est Results Re	epor	t Temp	late			
Machine				External		ISO 15 E		
Asset #				Air Filter		□ ISO 35 H		
Make/Model Serial number				Classifi	cation	□		
Date of				Recircu	lation	□ ISO 15 E		
Performance				Air Filter		ISO 35 H		
Test:				Classifi	cation			
Equipment Type	3	Jake		Мо	lel	Serial #	Calibration Date	
Aerosol Generator (fog machine)						N/A	N/A	
Dust Monitor								
1) Pressure Test								
Pressure			Fan	Speed				
🗆 Pa	No fan Key "On."	Low		Med		High		
□ In-H ₂ O								
2) External Air S	stem Leakage T	est						
External air System Leakage	Pressure Max Concentration □ Pa (required \$100 μg) □ In-H2O (μg/m3)					100 μg/m ³)		
3) Decay Time Te	est							
Decay Time (performed on low fan speed)	Initial Concentration (µg/m ³)	Max Concentration >2000 µg/m ³ but less than <5000 µg/m ³	Cor	ay time f Max acentratic ≤25 μg/m (in seconds	on to 1	Pressure (requirement 50 Pa 10 Pa) Pa In-H ₂ O		
4) CO ₂ Levels Tes	t							
Carbon Dioxide Check one:	Pressure Pa In-H ₂ O		co	concentration (ppm)		Concentration after 15 minutes of CO ₂ (ppm) Requirement: (≤ ambient + 400 PPM)		
Two operators Three operators Additional Con	mente							

- 2.5 meters of the external air intake.Record the dust concentration
- within the enclosure. It must start at a level below 25 µg/m³
- Discharge the fog directly at the external air intake for less than 3 seconds
- Record the highest dust concentration level shown on the monitor within 60 seconds after the fog is discharged

With permission of www.iseee.net



Machine Asset #										
Total hours in the planned maintenance cycle										
	PM Inspection # 1			PM	I Inspecti	on #2	PM I	nspectio	on #3	
	(within 24 hours)			(~50%)			(~80%)			
Date of inspection										
Machine hours at planned maintenance										
Pressure		Fan Speed			Fan Spe	ed	F	an Spee	d	
	Low	Med	High	Low	Med	High	Low	Med	High	
(Pa)(In-H ₂ O)										
Is HVAC airflow at vents unrestricted through all fan speeds?		Yes / No		Y	Yes / No		Yes / No			
Visual inspection of external/recirculation filters?		Good / Fair / Poor			Good / Fair / Poor			Good / Fair / Poor		
Visual evidence of particulate accumulation on surfaces in operator enclosure?		Low / Med / High			Low / Med / High			Low / Med / High		
Visual inspection of operator enclosure integrity – door/window seals, presence of cracks, ability to close all windows and doors tightly		Good / Fair / Poor			Good / Fair / Poor		Good / Fair / Poor			
Operator enclosure housekeeping		Good / Fair / Poor			Good / Fair / Poor		Good / Fair / Poor			
Is HVAC cooling/heating efficiently?		Good / Fair / Poor			Good / Fair / Poor		Good / Fair / Poor			
Notes:										

Amendment June 22 – Why?

- Standard required filters to comply with ISO 29463;
- Removed all references to ISO 29463;
- AS4260 & AS1324 able to be used to achieve standard;
- Filter label to disclose filter efficiency at 0.3µ-0.5µ, nominal airflow and filter restriction;
- Requirement is to pass the air quality system tests;
- Allows for regional and national filter test standards e.g. Standards Australia, filters to qualify;
- Being reviewed for Standards Australia Identical Adoption.

- National Institute for Occupational Safety & Health (NIOSH) researching real time particulate monitors (sensors) – finding < \$US 100 as/more accurate than current expensive technologies;
- Goal to have reliable, affordable real time particulate monitors in cabs

Standard Development

- The development of an ISO Standard has commenced;
 - Operator enclosures Gas filtration;
- Covers gas filtration performance and operational integration of gas filtration;
- Expands to include additional industries e.g. waste management;
- Can be applied for gaseous environments e.g. operating cranes in smelting operations;
- Current draft field testing @ Teck Coal, RTA;
- Plan to have draft submitted for review Q4 2022

Thank you